

Mob. : 9470844028 9546359990

RAM RAJYA MORE, SIWAN

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XI (PQRS)

COMPLEX NUMBER

& Their Properties

CONTENTS

THINGS TO REMEMBER

Complex Numbers

The number of the form $x + iy$ are known as complex numbers. Here x and y are real numbers and

$$
i = \sqrt{-1}
$$
 is not.

The complex number is usally denoted by z and its set is denoted by C.

$$
\therefore \qquad C = \{x + iy : x, y \in R, i = \sqrt{-1}\}.
$$

eg, $7 + 2i$, $0 + i$, $1 + 0i$, etc are complex numbers.

Integral Power of Iota : $i = \sqrt{-1}$ is called the imaginary unit. Also $i^2 = -1$, $i^3 = -i$, $i^4 = 1$. In general $i^{4n} = 1$, $i^{4n+1} = -i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$, for any integer n eg, *i* $i^{4 \times 499 + 2} = -1.$

Real and Imaginary Parts of Complex Number

Let $z = x + iy$ is a complex number, then x is called the real part of z and is denoted by Re(z) and y is called the imaginary part of *z* and is denoted by Im(*z*).

eg, If $z = 7 + 4i$, then Re(*z*) = 7 and Im(*z*) = 4.

A complex number *z* is said to be purely real if $Im(z) = 0$ and is said to be purely imaginary if $Re(z) = 0$. The complex number $0 = 0 + i0$ is both purely real and purely imaginary.

Every real number '*a*' can be written as $a + i0$. Therefore, every real number is considered as a complex number whose imaginary part is zero.

Equality of Complex Numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are two complex numbers, then these two numbers re equal, if

 $x_1 = x_2$ and $y_1 = y_2$ ig, $Re(z_1) = Re(z_2)$

and $\text{Im}(z_1) = \text{Im}(z_2)$

eg, If $z_1 = 2 - iy$ and $z_2 = x + 3i$ are equal, then $2 - iy = x + 3i$.

$$
\Rightarrow \qquad \qquad x = 2 \text{ and } y = -3
$$

Algebraic Operations on Complex Numbers

1. Addition of Complex Numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are two complex number then

$$
z_1 + z_2 = x_1 + iy_1 + x_2 + iy_2
$$

= $(x_1 + x_2) + i(y_1 + y_2)$

$$
\Rightarrow \text{Re}(z_1 + z_2) = \text{Re}(z_1) + \text{Re}(z_2)
$$

and

$$
\text{Im}(z_1 + z_2) = \text{Im}(z_1) + \text{Im}(z_2)
$$

Properties of Addition of Complex Number

(i) $z_1 + z_2 = z_2 + z_1$ (Commutative law)

Ram Rojnya Ram Rajya More, Siwan (Bihar)

(ii) $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ (Associative law)

(iii) $z + 0 = 0 + z$ (where $0 = 0 + i0$)

2. Subtraction of Complex Number

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are two complex number then

$$
z_{1} - z_{2} = (x_{1} + iy_{1}) - (x_{2} + iy_{2})
$$

= $(x_{1} - x_{2}) + i(y_{1} - y_{2})$

$$
\Rightarrow \text{Re}(z_{1} - z_{2}) = \text{Re}(z_{1}) - \text{Re}(z_{2})
$$

and

$$
\text{Im}(z_{1} - z_{2}) = \text{Im}(z_{1}) - \text{Im}(z_{2})
$$

3. Multiplication of Complex Number

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are two complex number then $z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2)$ $= (x_1 x_2 - y_1 y_2) + i(x_1 x_2 + y_1 y_2)$ \Rightarrow $I_1 z_2 = [Re(z_1) Re(z_2) - Im(z_1) Im(z_2)] + i[Re(z_1) Re(z_2) + Im(z_1) Im(z_2)]$

Properties of Addition of Complex Number

(i) $z_1 z_2 = z_2 z_1$ (Commutative law)

- (ii) $z_1(z_2 z_3) = (z_1 z_2) z_3$ (Associative law)
- (iii) If $z_1 z_2 = 1 = z_2 z_1$, then z_1 and z_2 are multiplicative inverse of each other.

(iv) (a) $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$ (Left distribution law)

(b) $(z_2 + z_3) z_1 = z_2 z_1 + z_3 z_1$ (Right distribution law)

4. Division of Complex Number

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are two complex number then

$$
\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2}
$$

=
$$
\frac{1}{x_2^2 + y_2^2} [(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)]
$$

Representation of a Complex Numbers

Comlex number can be represented as follows

1. Geometrical Representation of a Complex Number

The complex number may be represented graphically by the oint P whose rectangular coordinated are (x, y) . Thus each point in the plane is associated with a complex number. In the figure P defines $z = x + iy$. it is customary to choose *x*-axis as real axis and *y*-axis as imagnary axis. Such a plane is called Argand plane or Argand diagram of complex plane or gaussian plane.

Distance of P from origin is $OP = \sqrt{x^2 + y^2}$. It is called the modulus of *z* and angle of OP with positive direction of *x*-axis is called argument of *z*.

$$
\tan \theta = \frac{y}{x}
$$
 or $\theta = \tan^{-1} \left(\frac{y}{x} \right)$

2. Trigonometrical or Polar Representation of a Complex Number

Let $z = x + iy$ is a complex number which is denoted by a point $P(x, y)$ in a complex plane, then

 $\ddot{\cdot}$

and
$$
POX = t = arg(z)
$$

 $OP = |z|$

In POM,

 $|z|$ cos *z x OP* $\theta = \frac{OM}{2R}$ \Rightarrow $x = |z| \cos \theta$ and $|z|$ sin *z y OP* $heta = \frac{PM}{2R}$ \Rightarrow $x = |z| \cos \theta$ \therefore $z = x + iy$ \Rightarrow $z = |z| \cos \theta + i |z| \sin \theta$ \Rightarrow $z = |z| (\cos \theta + i \sin \theta)$ \Rightarrow $z = r (\cos \theta + i \sin \theta)$ Where $r = |z|$ and $\theta = \tan^{-1} |\frac{y}{z}|$ $\left(\frac{y}{x}\right)$ $=$ tan⁻¹ *x* $\theta = \tan^{-1}\left(\frac{y}{x}\right)$

This form of z is known as polar form.

In general, polar form is

 $z = r \left[cos(2n\pi + \theta) + i sin(2n\pi + \theta) \right]$

J

 \setminus

Where, $r = |z|$, $\theta = \arg(z)$ and $n \in N$.

3. Eulerian Form of a Complex Number

We have, $e^{i\theta} = \cos\theta + i \sin\theta$ and $e^{-i\theta} = \cos\theta - i \sin\theta$

These two are called Euler's notations.

Let z be any complex number number such that $|z| = r$ and $arg(z) = t$. Then $z = z = x + iy = r(\cos\theta)$ $+ i \sin\theta$) can be represented in exponential or Eulerian form as.

 $z = r e^{i\theta} = r (\cos \theta + i \sin \theta)$

Conjugate of a Complex Number

Let *z* is a complex Number, then conjugate of *z* is denoted by \overline{z} of *z*' and is equal to $x - iy$.

Thus, $\overline{z} = x - iy$

Geometrically, the conjugate of z is the reflection of point image of z in the real axis.

eg, If $z = 3 + 4i$, then $\bar{z} = 3 - 4i$

Properties of Conjuate of Complex Numbers

If z, z_1 , z_2 are complex numbers, then

(i)
$$
\overline{(\overline{z})} = z
$$

(ii)
$$
z + \overline{z} = 2 \text{ Re}(z)
$$

$$
(iii) \t z - \overline{z} = 2 \text{Im}(z)
$$

- (iv) $z = \overline{z} \implies z$ is purely real.
- (v) $z = -\overline{z} \implies z$ is purely imaginary.

(vi)
$$
z\overline{z} = {Re(z)}^2 + {Im(z)}^2
$$

(vii) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

$$
\text{(viii)} \quad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2
$$

$$
(ix) \quad \overline{z_1 z_2} = \overline{z}_1. \ \overline{z}_2
$$

$$
(x) \quad \left(\frac{z_1}{z_2}\right) = \frac{\overline{z}_1}{\overline{z}_2}, \ z_2 \neq 0
$$

$$
(xi) \quad \overline{z}^n = (\overline{z})^n
$$

Modulus of a Complex Number

Let $z = x + iy$ is a complex Number, then modulus of a complex number z is denoted by | z |.

$$
\therefore \qquad |z| = \sqrt{x^2 + y^2} = \sqrt{\{\text{Re}(z)\}^2 + \{\text{Im}(z)\}^2}
$$

RAM RAJYA Ram Rajya More, Siwan (Bihar)

eg, If $z = 4 + 3i$ is a complex number, then

$$
|z| = \sqrt{4^2 + 3^2}
$$

= $\sqrt{16 + 9} = \sqrt{25} = 5$

Properties of Modulus of Complex Numbers

- (i) $|z| \ge 0 |z| = 0$, iff $z = 0$ and $|z| > 0$, iff $z \ne 0$
- (ii) $|z| \leq Re(z) \leq |z|$ and $-|z| \leq Im(z) \leq |z|$
- (iii) $|z| = |\bar{z}| = |-z| = |\bar{z}|$
- (iv) $z\overline{z} = |z|^2$

(v)
$$
|z_1z_2| = |z_1||z_2|
$$

In general, $|z_1z_2z_3....z_n| = |z_1||z_2||z_3|......|z_n|$

(vi)
$$
\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, (z_2 \neq 0)
$$

(vii)
$$
|z_1 \pm z_2| \le |z_1| + |z_2|
$$

In general, $|z_1 \pm z_2 \pm z_3 \pm \pm z_n| \le |z_1| + |z_2| + |z_3| + + |z_n|$

- (viii) $|z_1 \pm z_2| \geq |z_1| + |z_2|$
- (ix) $|z^{n}| = |z|^{n}$
- (x) $||z_1|-|z_2|| \leq |z_1+z_2| \leq ||z_1|+|z_2||$ Thus, $|z_1| + |z_2|$ is the greatest possible value of $|z_1 + z_2|$ and $|z_1| - |z_2|$ is the least possible value of $|z_1 + z_2|$.

$$
\begin{aligned} \n\text{(xi)} \quad | \mathbf{z}_1 \pm \mathbf{z}_2 |^2 &= (\mathbf{z}_1 \pm \mathbf{z}_2)(\overline{z}_1 \pm \overline{z}_2) \\ \n&= |\mathbf{z}_1|^2 + |\mathbf{z}_2|^2 \pm (\mathbf{z}_1 \overline{z}_2 + \overline{z}_1 \mathbf{z}_2) \\ \n&= |\mathbf{z}_1|^2 + |\mathbf{z}_2|^2 \pm \text{Re}(\mathbf{z}_1 \overline{z}_2) \\ \n&= |\mathbf{z}_1|^2 + |\mathbf{z}_2|^2 \pm 2 |\mathbf{z}_1| |\overline{z}_2| \cos(\theta_1 - \theta_2) \n\end{aligned}
$$

(xii) $z_1 \overline{z}_2 + \overline{z}_1 z_2 = 2 |z_1| |z_2| \cos(\theta_1 - \theta_2)$ Where, $\theta_1 = \arg(z_1)$ and $\theta_2 = \arg(z_2)$.

(xiii)
$$
|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 \Leftrightarrow \frac{z_1}{z_2}
$$
 is purely imaginary.
\n(xiv) $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2 \{ |z_1|^2 + |z_2|^2 \}$

(xv) $|az_1 - bz_2|^2 + |bz_1 - az_2|^2 = (a^2 + b^2) (|z_1|^2 + |z_2|^2)$

Argument of a Complex Number

Let $z = x + iy$ is a complex Number, then argument of complex number is dinoted by arg(z) or amp(z).

$$
\arg\left(z\right) = \tan^{-1}\left|\frac{y}{x}\right|.
$$

eg, If $z = 4 + 3i$ is a complex number, then $arg(z) = \tan^{-1} \left(\frac{z}{4} \right)$ J $\left(\frac{3}{4}\right)$ \setminus -1 4 $\tan^{-1}\left(\frac{3}{4}\right)$.

RAM RAM Rajya More, Siwan (Bihar) M.S. (Maths), B.E. (Maths), B.E. (Maths), B.E. (Maths), B.E. (Maths), B.E. (

6

Principal Value of Argument

The value of t of the argument which satisfies the inequality $-\pi < \theta < \pi$ is called the principal value of the argument.

Principal values of the argument are θ , $\pi - \theta$, $-\pi + \theta$, $-\theta$ according as the complex number lies on the Ist, $\mathbf{H}^{\text{nd}}, \mathbf{H}\mathbf{H}^{\text{rd}}$ and $\mathbf{I}\mathbf{V}^{\text{th}}$ qudrant. y

Properties of Argument of Complex Numbers

If z_1 , z_2 , z_3 are three complex numbers, then

(i)
$$
\arg (z_1, z_2) = \arg(z_1) + \arg(z_2) + 2k\pi (k = 0 \text{ or } 1 \text{ or } -1)
$$

In general, $\arg (z_1z_2z_3....z_n) = \arg (z_1) + \arg (z_2) + \arg (z_3)$ $\arg (z_n) + 2k\pi (k = 0 \text{ or } 1 \text{ or } -1)$

(ii)
$$
\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) + 2k\pi (k = 0 \text{ or } 1 \text{ or } -1)
$$

(iii)
$$
\arg\left(\frac{z}{\bar{z}}\right) = 2 \arg(z) + 2k\pi (k = 0 \text{ or } 1 \text{ or } -1)
$$

(iv)
$$
\arg(z^n) = n \arg(z) + 2k\pi (k = 0 \text{ or } 1 \text{ or } -1)
$$

(v) If
$$
\arg\left(\frac{z_2}{z_1}\right) = \theta
$$
, then $\arg\left(\frac{z_1}{z_2}\right) = 2k\pi - \theta$, where $k \in I$

$$
(vi) \quad \arg\left(\bar{z}\right) = -\arg\left(z\right)
$$

(vii) If arg $(z) = 0 \implies z$ is real.

(viii)
$$
arg(z_1 \overline{z}_2) = arg(z_1) - arg(z_2)
$$

(ix) $|z_1 + z_2| = |z_1 - z_2|$

 $\Rightarrow \arg(z_1) - \arg(z_2) = \frac{\pi}{2}$

$$
(x) |z1 + z2| = |z1| + |z2|\n⇒ arg(z1) = arg(z2)\n(xi) |z1 + z2|2 = |z1|2 + |z2|2
$$

RAM RAJYA MORE, Siwan (Bihar) Ram Rajya More, Siwan (Bihar)

$$
\Rightarrow
$$
 $\frac{z_1}{z_2}$ is purely imaginary.

(xii) If $|z_1| \le 1, |z_2| \le 1$, then (a) $|z_1 - z_2|^2 \le (|z_1| - |z_2|)^2 + [\arg(z_1) - \arg(z_2)]^2$ (b) $|z_1 + z_2|^2 \ge (|z_1| + |z_2|)^2 - [\arg(z_1) - \arg(z_2)]^2$

Square Root of a Complex Number

Let $a + ib$ is a complex Number such that $\sqrt{a + ib} = x + iy$, where *x* and *y* are real numbers.

Now, $\sqrt{a+ib} = x+iy \implies (x+iy)^2 = a+ib$ \Rightarrow (x) $(2-y^2) + 2ixy = a + ib$ \Rightarrow x $y^2 - y^2$ = *a*(i) and $2xy = b$ (ii) Now, (*x* $(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2$ \Rightarrow (x) $(a^2 + y^2)^2 = a^2 + b^2$ \Rightarrow (x) $(x^2 + y^2) = \sqrt{a^2 + b^2}$ (iii) $[\because x^2 + y^2 > 0]$

On solving Eqs. (i) and (iii), we get

$$
x^{2} = \left(\frac{1}{2}\right)\left[\sqrt{a^{2} + b^{2}} + a\right]
$$

and

$$
y^{2} = \left(\frac{1}{2}\right)\left[\sqrt{a^{2} + b^{2}} - a\right]
$$

J $\left(\frac{1}{2}\right)$ \setminus

 $=\pm \sqrt{\frac{1}{2} \sqrt{a^2+b^2}}$ 2 1

$$
\Rightarrow \qquad \qquad x = \pm \sqrt{\left(\frac{1}{2}\right)\left[\sqrt{a^2 + b^2} + a\right]}
$$

and $y = \pm \sqrt{\frac{1}{2} \left[\sqrt{a^2 + b^2} - a \right]}$

If b is positive, then the sign of x and y from Eq. (ii) will be same ie,

$$
\sqrt{a+ib} = \pm \left[\sqrt{\left(\frac{1}{2}\right)\left[\sqrt{a^2+b^2}+a\right]} + i\sqrt{\left(\frac{1}{2}\right)\left[\sqrt{a^2+b^2}-a\right]} \right]
$$

If b is negative, then the sign of *x* and y will be opposite.

i.e,
$$
\sqrt{a+ib} = \pm \left[\sqrt{\left(\frac{1}{2}\right) \left[\sqrt{a^2+b^2}+a\right]} - i \sqrt{\left(\frac{1}{2}\right) \left[\sqrt{a^2+b^2}-a\right]} \right]
$$

Concept of Rotation

RAM RAJYA MORE, Siwan (Bihar) Ram Rajya More, Siwan (Bihar) Let z_1 , z_2 , z_3 be the vertices of a triangle ABC discribed in anti clockwise sense. Draw OP and OQ **8**

parallel and equal to AB and AC respectively. Then point P is $z_2 - z_1$ and Q is $z_3 - z_1$. If OP is rotated through angle α in anti-clockwise sense it coincides with \overrightarrow{OQ} .

$$
[\because OPQ \text{ and ABC are congruent.} : \frac{OQ}{OP} = \frac{CA}{BA}]
$$

or

$$
\begin{array}{c}\n\text{amp} \left(\frac{z_3 - z_1}{z_2 - z_1}\right) = \alpha \\
\text{y} \left(\frac{C(z_3)}{z_2 - z_1}\right) \\
\text{c}(z_4) \\
\text{d}(z_5 - z_1) \\
\text{d}(z_2) \\
\text{d}(z_3 - z_1) \\
\text{d}(z_2) \\
\text{d}(z_3 - z_1) \\
\text{d}(z_2) \\
\text{d}(z_3 - z_1) \\
\text{e}(z_3 - z_1) \\
\text{f}(z_2 - z_1) \\
\text{g}(z_3) \\
\text{h}(z_1) \\
\text{h}(z_2) \\
\text{h}(z_3) \\
\text{h}(z_1) \\
\text{h}(z_2) \\
\text{h}(z_3) \\
\text{h}(
$$

DeMoivre's Theorem

A simple formula for calculating powers of complex number known as De Moivre's Theorem. If n is a rational number, then

$$
(\cos\theta + i \sin\theta)^n = \cos n \theta + i \sin n \theta
$$

Application of DeMoivre's Theorem

- 1. If $z = (\cos\theta_1 + i \sin\theta_1) (\cos\theta_2 + i \sin\theta_2) \dots (\cos\theta_n + i \sin\theta_n)$ then, $z = cos(\theta_1 + \theta_2 + \dots + \theta_n) + i sin(\theta_1 + \theta_2 + \dots + \theta_n)$
- 2. If $z = r (\cos \theta + i \sin \theta)$ and n is a positive integer, then

$$
(z)^{1/n} = r^{1/n} \bigg[\cos \bigg(\frac{2k\pi + \theta}{n} \bigg) + i \sin \bigg(\frac{2k\pi + \theta}{n} \bigg) \bigg]
$$

where, $k = 0, 1, 2, 3, \dots, (n-1)$

3. $(\cos \theta - i \sin \theta) = \cos n\theta - i \sin n\theta$

4.
$$
\frac{1}{\cos\theta + i\sin\theta} = (\cos\theta + i\sin\theta)^{-1} = \cos\theta - i\sin\theta
$$

5. $(\sin \theta \pm i \cos \theta)^n \neq \sin n \theta \pm i \cos n \theta$

6.
$$
(\sin\theta + i \cos\theta)^n = \left[\cos\left(\frac{\pi}{2} - \theta\right) + i \sin\left(\frac{\pi}{2} - \theta\right)\right]^n
$$

RAM RAJYA Ram Rajya More, Siwan (Bihar)

$$
= \left[\cos\left(\frac{n\pi}{2} - n\theta\right)\right] + i\left[\sin\left(\frac{n\pi}{2} - n\theta\right)\right]
$$

7. $(\cos \theta + i \sin \phi)^n \neq \cos n\theta + i \sin n\phi$

Cube Roots of Unity

Let

$$
x = \sqrt[3]{1} \Rightarrow x^3 - 1 = 0
$$

$$
\Rightarrow
$$

$$
\Rightarrow \qquad (x-1)(x^2+x+1)=0
$$

Therefore,

2 $-1 + i\sqrt{3}$, 2 $-1-i\sqrt{3}$

If second root be represented by w, then third root will be ω^2 .

 \therefore Cube roots of unity are 1, ω , ω^2 , 1 is a real root of unity and other two ie, ω and ω^2 are conjugate complex of each other.

Properties of Cube Roots of Unity

(i)
$$
\omega^3 = 1
$$
 or $\omega^{3r} = 1$

(ii)
$$
\omega^{3r+1} = \omega, \ \omega^{3r+2} = \omega^2
$$

(iii) $1 + \omega^r + \omega^{2r} = 0$, if 'r' in not a multiple of '3'

 $= 3$, if 'r' is multiple of '3'.

- (iv) Each complex cube root of unity is square of other and also reciprocal of each other.
- (v) If a is any positive number, then a^{1/3} has roots a^{1/3} (1), a^{1/3} (ω), a^{1/3} (ω ²) and if a is any negative number, then a^{1/3} has roots $- |a|^{1/3}$, $|a|^{1/3}$ ω , $|a|^{1/3}$ ω^2 .
- (vi) The Cube roots of unity when represented on complex plane lie on vertices of an equilateral tri angle inscribed in a unit circle having center at origin. One vertex being on positive real axis.

Important Relations

(i)
$$
x^2 + xy + y^2 = (x - y\omega)(x - y\omega^2)
$$

\n(ii) $x^2 - xy + y^2 = (x + y\omega)(x + y\omega^2)$
\n(iii) $x^3 + y^3 = (x + y)(x + y\omega)(x + y\omega^2)$
\n(iv) $x^3 - y^3 = (x - y)(x - y\omega)(x - y\omega^2)$

*n***th Roots of Unity**

Let $z = 1^{1/n}$, then

RAM RAJYA MORE, Siwan (Bihar) Ram Rajya More, Siwan (Bihar)

10

$$
z = (\cos 0^\circ + i \sin 0^\circ)^{1/n}
$$

$$
\Rightarrow \qquad \qquad z = (\cos 2r\pi + i\sin 2r\pi)^{1/n}, r \in I
$$

⇒
$$
z = \cos \frac{2r\pi}{n} + i \sin \frac{2r\pi}{n}, r = 0, 1, 2, \dots, (n-1)
$$

[Using DeMoivre's theorem]

⇒
$$
z = \left\{ e^{\frac{i2\pi}{n}} \right\}^r
$$
, r = 0, 1, 2,............ (n-1)

$$
\Rightarrow \qquad z = \alpha^r, \, \alpha = e^{\frac{i2\pi}{n}}, \, r = 0, 1, 2, \dots, (n-1)
$$

Thus, *n*th roots of unity are 1, , 2 ,................. n – 1, where = *ⁿ i e* 2π $=$ cos *n* $\frac{2\pi}{i} + i \sin$ *n* $\frac{2\pi}{\pi}$.

Properties of *n***th Roots of Unity.**

- (i) *n*th roots of unity form form a GP with common ratio.
- (ii) Sum of nth roots of unity is always zero.
- (iii) Product of nth roots of unity is $(-1)^{n-1}$.
- (iv) *n*th roots of unity are the vertices of the regular polygon of n sides inscribed in a circle of radius unity centred at origion. One vertex being on the positive real axis.

Use of Complex Numbers in Coordinate Geometry

1. Distance between Two Points

Distance between two points $P(z_1)$ and $Q(z_2)$ is

$$
PQ = | z_2 - z_1 |
$$

2. Section Formula

Let $R(z)$ divides a join of $P(z1)$ and $Q(z2)$ in the ratio m : n

(i) If R(z) divides the line segment PQ internally, then

$$
P(z1)
$$

\n
$$
P(z1)
$$

\n
$$
z = \frac{mz_2 + nz_1}{m+n}
$$

 (ii) If $R(z)$ divides the line segment PQ externally, then

3. Equation of Perpendicular Bisector

If $P(z_1)$ and $Q(z_2)$ are two fixed points ard $R(z)$ is an equidistant point from P and Q. Then

- (i) **Parametric form** Equation of line joining points $P(z_1)$ and $Q(z_2)$ is $z = tz_1 + (1-t)z_3$, where $t \in R$
- (ii) **Non-Parametric form** Equation of line joining points $P(z_1)$ and $Q(z_2)$ is

$$
\begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \end{vmatrix} = 0
$$

- ⇒ $z(\bar{z}_1 \bar{z}_2) \bar{z}(z_1 z_2) + z_1 \bar{z}_2 z_2 \bar{z}_1 = 0$ (iii) General equation General equation of straight line is $\bar{a} z + a \bar{z} + b = 0$, where a is a complex
	- number and b is a real number.

5. Equation of a circle

(i) Equation of a circle whose radius is r and centre is $C(z_0)$, is $|z - z_0| = r$. If the center of circle lies on the origin, then equation of circle is $|z| = r$.

RAM RAM RAJYA More, Siwan (Bihar) M.S. (Maths), B.E. (Maths), B.E. (Maths), B.E. (Maths), B.E. (Maths), B.E. (

12

- (ii) The general equation of a circle is $z\bar{z} + a\bar{z} + \bar{a}z + b = 0$, where a e C and b e R. center of circle is at $-a$ and radius is $\sqrt{a^2-b}$.
- (iii) If $P(z_1)$ and $Q(z_2)$ are the vertices of diameter of a circle, then equation of circle is

6. **Some Standard Equations**

(i) The equation of parabola is

$$
z\overline{z} - 4a(z + \overline{z}) = \frac{1}{2} \{z^2 + (\overline{z})^2\}.
$$

(ii) The equation oa an ellipse is

$$
|z - z_1| + |z - z_2| = 2a, \qquad \text{Where } 2a > |z_1 - z_2|
$$

and z_1 and z_2 are foci.

(iii) The equation of a hyperbola is

$$
|z - z_1| - |z - z_2| = 2a
$$
, Where $2a > |z_1 - z_2|$
1 z, are foci.

and
$$
z_1
$$
 and z_2 are foci.

(iv) The equation
$$
\left| \frac{z - z_1}{z - z_2} \right| = k
$$
 will represent a circle if $k \neq 1$.

and will represent a line if $k = 1$.

(v) The equation
$$
|z - z_1|^2 + |z - z_2|^2 = k
$$
 represent a circle, if $k \ge \frac{1}{2} |z_1 - z_2|^2$.

Some Important Results

1. The coordinates of centroid of a triangle ABC whose vertex are $A(z_1)$, $B(z_2)$ and $C(z_3)$, is

$$
G(z) = \frac{z_1 + z_2 + z_3}{3}
$$

2. The triangle whose vertices are z1, z2, z3 is equilateral iff

or
\n
$$
\frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} = 0
$$
\n
$$
z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1
$$

RAM RAJYA Ram Rajya More, Siwan (Bihar)

3. If
$$
\arg\left(\frac{(z_2 - z_3)(z_1 - z_4)}{(z_1 - z_3)(z_2 - z_4)}\right) = \pm \pi
$$
, 0 (or purely real), then the points z_1, z_2, z_3, z_4 are concyclic.

4.
$$
\arg\left(\frac{z-z_1}{z-z_2}\right) = 0 \Rightarrow \text{Locus of } z \text{ is a straight line passing through } z_1 \text{ and } z_2.
$$

Note :

- $i = -\frac{1}{i}$ $i = -\frac{1}{i}$
- The sum of any four consecutive powers of i is zero. ie,

$$
i^{4n+1} + i^{4n+2} + i^{4n+3} + i^{4n+4} = 0
$$

• $\sqrt{-a} = i \sqrt{a}$, when a is any real number.

Then, $\sqrt{-a}\sqrt{-b} = i\sqrt{a} i\sqrt{b} = -\sqrt{ab}$

- But $\sqrt{-a}\sqrt{-b} = \sqrt{(-a)(-b)} = \sqrt{ab}$ is wrong.
- Two complex numbers cannot be compared ie, no greater complex number can be find in two given complex numbers.
- From the definition it is clear conjugate of a complex number can be obtained by replacing i by $-i$.
- If z is unimodular, then $|z| = 1$. Now, if $f(z)$ is a unimodular, then it always be expressed as $f(z) = \cos\theta + i \sin\theta$, $\theta \in R$.
- If $x, y \in R$, then

$$
\sqrt{x+iy} + \sqrt{x-iy} = \sqrt{2\left(\sqrt{x^2 + y^2} + x\right)}
$$

$$
\sqrt{x+iy} - \sqrt{x-iy} = \sqrt{2\left(\sqrt{x^2 + y^2} - x\right)}
$$

- $1 = cos0 + i sin0$
- $-1 = \cos \pi + i \sin \pi$
- $i = \cos{\frac{\pi}{2}} + i \sin{\frac{\pi}{2}}$ sin 2 $i = \cos{\frac{\pi}{2}} + i \sin{\frac{\pi}{2}}$
- \bullet 2 sin 2 $i = \cos{\frac{\pi}{2}} + i \sin{\frac{\pi}{2}}$
- Distance of a point $P(z)$ from the origin = $|z|$.
- If R(z) is a mid point of PQ, then $z = \frac{z_1 + z_2}{2}$

• Three points will be collinear, if for $A(z_1)$, $B(z_2)$, $C(z_3)$.

 $AB + BC = AC$

ie, $|z_1 - z_2| + |z_2 - z_3| = |z_1 - z_3|$

• Three points z_1 , z_2 and z_3 will be collinear, if $|z_1 \quad \bar{z_1} \quad 1| = 0$ 1 1 1 2 \sim 2 \bar{z}_1 \bar{z}_1 $1|=$ z_2 \overline{z} z_1 \overline{z} *z z*

|

- Slop of line $\overline{a} z + a \overline{z} + b = 0$ is *a a*
- If α_1 and α_2 are slopes of two lines in a complex plane, then
	- (a) lines will be parallel if, $\alpha_1 = \alpha_2$.
	- (b) lines will be parpendicular if, $\alpha_1 + \alpha_2 = 0$.
- Slop of line PQ joining two points $P(z_1)$ and $Q(z_2)$ = $1 - 42$ $1 - 2$ $\overline{z}_1 - \overline{z}$ $z_1 - z$ \overline{a} \overline{a}
- Elength of perpendicular from a point $P(z_1)$ to the line $\overline{a} z + a \overline{z} + b = 0$

$$
= \frac{|a\overline{z}_1 + \overline{a}z_1 + b|}{|a| + |\overline{a}|} = \frac{|a\overline{z}_1 + \overline{a}z_1 + b|}{2|\overline{a}|}
$$

.